Zu Besuch in der Radiostation Grimeton – so entstehen Langwellen
Wer erinnert sich noch an die Radios mit ihrem Breitbandempfang, den Transistoren und dem Zeiger, der durch Drehen eines der runden Knöpfe auf die richtige Freuquenz kommt und je nach Wahl einen der weltweiten Sender bekommt? Zuvor hat man dazu eine Wahltaste für UltraKurzWelle, Mittelwelle oder Langwelle gedrückt. Wie diese Wellen entstehen, darüber mache ich mir zum ersten Mal Gedanken in der Radiostation Grimeton in Schweden, im einzig verbliebenen Maschinensender der Welt.
Für diesen Artikel helfen Grundkenntnisse in der Physik. Auch, wer als Kind mal einen Elektrobaukasten hatte und einen Elektromagneten gebastelt hat, wird sich in die technische Beschreibung hineinfinden können.
Radiostation Grimeton: Von Alternatoren und Langwellen
Neben der riesigen, Kilometer langen Antennenanlage der Radiostation Grimeton gibt es eine große, modern wirkende Maschinenhalle als Herzstück der Anlage. Ihre Architektur erinnert ein wenig an die von Wasserkraftwerken. Das kommt nicht von ungefähr, denn im Maschinenhaus der Radiostation Grimeton wartet ein von ehemals zwei beachtlichen Generatoren und vielen Schaltschränken und Pumpen. Hier entstehen die Langwellen des Längstwellensenders Grimeton, die von hier aus um die Welt geschickt werden.
Irgendwie erinnert mich das Innenleben des Maschinenhauses der Radiostation an Filme wie „Zurück in die Zukunft“ oder den ein oder anderen James Bond. Dazu trägt auch der Name des wohl markantesten Bauteils der Anlage bei.
Der Alternator in der Radiostation Grimeton
50 Tonnen Stahlguß und jede Menge Kupfer- wenn dieses Bauteil hochgefahren wird, treibt es den einen Tränen vor Rührung in die Augen, den anderen Ehrfurcht und Schweiß. Leise geht das alles nicht von statten, aber diese Einheit ist das Bauteil, welches den internationalen Sendebetrieb überhaupt erst möglich gemacht hat. Der Alternator besteht aus einen großen Antriebsmotor, der über ein Zahnradgetriebe den Hochfrequenzgenerator antreibt. Man kann den Alternator schon als große Höllenmaschine beschreiben, dessen mattschwarze Erscheinung mit den kupfernen Rundanzeigen schon einen leicht gesepnstigen Eindruck hinterlässt. Zu Anfang gab es zwei Alternatoren, für die ein robustes Fundament erforderlich ist.
Der Alternator ist nach seinem Erfinder und Konstrukteur benannt, nach Alexandersson.
Der Antriebsmotor des Alternator
Etwa die zehnfache Haushaltsspannung ist erforderlich, um den Stator, den Antriebsmotor, in Gang zu setzen. Mit 2.200 Volt bringt er den Antriebsmotor des Alternator auf eine Leistung von 370 Kilowatt, also etwa 500 PS. Eine echte Seltenheit des Stator ist seine Zweiphasenwicklung. Den Strom bezieht der Stator aus dem benachbarten Transformatorenhaus der Radiostation Grimeton, welches gleich unübersehbar neben dem Maschinenhaus steht. In dem hier verbauten Scott-Transformator wandelt sich der Dreiphasen-Drehstrom in Zweiphasen-Drehstrom.
Der Antriebsmotor läuft mit genau 711,3 Umdrehungen pro Minute und überträgt seine Bewegung auf das nachfolgende Zahnradgetriebe, welches den Generator dann auf konstant 2.115 Umdrehungen / pro Minute bringt.
Das Zahnradgetriebe
Über ein Zahnradgetriebe werden Antriebsmotor und Alternator miteinander verbunden. Durch entsprechende Übersetzung erreicht man einen konstanten Rundlauf des Alternator von 2.115 Umdrehungen pro Minute. Das ist der Garant für die ideale Frequenz.
Der Hochfrequenzgenerator
Der Hochfrequenzgenerator ist eine ganz eigenwillige Konstruktion und erinnert vielleicht an einen Sience Fiction-Film der 1960er Jahre. Mit seiner Konstruktion erreicht man eine für rotierende Maschinen sehr hohe Frequenz von 17.200 Hertz. Um die Verluste durch Ummagnetisierung so niedrig wie möglich zu halten, wurden die Wicklungen des Stators schichtweise mit dünnwandigem Transformatorblech aufgebaut. Die angetriebene Scheibe des Alternators hat eine Dicke von 7,5 mm und einen Durchmesser von 1,60 m. Im Vergleich: ein Autoblech ist etwa 0,8 mm dick.
Die Stahlscheibe sieht einem Zahnrad ähnlich, doch um den Luftwiderstand zu minimieren, hat man die Zwischenräume der Zähne mit unmagnetischem Messing gefüllt.
Der Stator umschließt die rotierende Stahlscheibe und hat lediglich einen Abstand von maximal einem Millimeter. Rund um die Stahlscheibe befinden sich am Stator 64 Ankerwicklungen. Diese Ankerwicklungen wirken als Elektromagnet, aber wie gesagt, mit einem Millimeter Abstand.
Nun rotiert die Stahlscheibe bei 2.115 Umdrehungen / Minute, im Bereich der Stahlzähne entsteht durch die elektromagnetischen Spulen ein starkes Magnetfeld. Doch dieses wird zwischen den Zähnen der Stahlscheibe durch die Messingfüllungen immer wieder unterbrochen.
In jeder Ankerwicklung fließt Strom mit 30 Ampere bei einer Spannung von 100 Volt. Dieser Strom wird an die Transformatoren des Hochfrequenzstellwerkes weiter gegeben.
Am besten stellt man sich ein großes Zahnrad vor, was schnell rotiert. Vielleicht erinnert sich noch jemand an das Glücksrad in gleichnamiger Fernsehsendung. Man hält nun eben einen Blechstreifen an die Zähne. Das macht Geräusche und zwar so oft, wie der Blechstreifen von einem Zahn berührt wird. Bei 2.115 Umdrehungen passiert das so oft, dass sich ein konstant schlagendes Geräusch mit Abstand von Millisekunden ergibt. Ungefähr dieses Geräusch kann man mit der Frequenz vergleichen.
Nominell kann der Hochfrequenzgenerator, wie er in der Radiostation Grimeton vorhanden ist, 200 KW leisten. Für den normalen Telegrammbetrieb in die USA reichten aber in der Regel 80 KW völlig aus. Hier war eine gute Lesbarkeit der Signale gewährleistet.
Die Flüssigkeitswiderstände
Der Antriebsmotor des Hochfrequenzgenerators ist über Kabel mit großen elektrischen Flüssigkeitswiderständen verbunden. Diese sind in drei Containern untergebracht und haben im Inneren eine elektrisch leitende Wasser-Lauge-Mischung. Über das Flüssigkeitsniveau wurde der asynchrone Antriebsmotor des Alternator geregelt.
Die multiplen Antennen
Die Sendeanlage besteht aus sechs mutiplen Antennen mit einem Abstand von 380 Meter. Jeder dieser Masten ist 127 Meter hoch. An ihrer Spitze befinden sich die 48 Meter breiten QuerarmeVor jedem Antennenmast befindet sich eine Spule.
Unter dem Antennenmasten befindet sich im Erdreich ein weiteres Netz aus entsprechenden Drähten.
Vom Maschinenhaus laufen die Verbindungskabel nun zu den Antennen, die durch die 12 Antennendrähte nun miteinander verbunden sind. In den Antennendrähten aus Kupfer, jeweils 2.2 Kilometer lang, fließt nun das Magentfeld, was durch den Hochfrequenzgenerator erzeugt wird. Die Schwingungen sind nun so stark, dass sie bis nach New York reichen und dort abgelesen werden können.
Vielleicht kann man das Ganze mit einem Wellenbad vergleichen, nur, dass das Wasserbecken tausend Kilometer lang ist. Erzeugt man auf der einen Seite die Wasserwellen. müssen sie so stark sein, dass sie in 1000 Kilometer Entfernung ankommen. Kommen die Wellen dann zu schwach an, muss man sie zu Beginn stärker erzeugen.
Bei den Langwellen oder Längstwellen kommen diese nun nicht als Wasserwellen, sondern als elektromagnetische Wellen durch die Luft.
Empfangsstation für die Langwelle war Kungsbacka
Telegramme nach Amerika versenden war die eine Sache, aber die Nachrichten aus Amerika mussten ja auch empfangen werden. Auch dazu benötigte man Antennen, die allerdings nur die Schwingungen aufnehmen mussten, die in der Sendestation nahe New York erzeugt wurden. Diese Antennen waren entsprechend kleiner und erinnern eher an Stromleitungen, die an Holzmasten geführt werden.
Die beiden parallel laufenden Antennendrähte hatten eine Gesamtlänge von 13,4 Kilometern und zogen sich quer durch Kungsbacka bis zum Transformator nach Skärsjön, etwa 40 Kilometer nördlich von Grimeton entfernt. Von hier aus wurden die Signale an die empfangsstation Kungsbacka weitergeleitet.
Und wie kommen die Wellen nun in die Luft und was hat Hertz mit Frequenz zu tun
Durch das Zahnrad zwischen den elektromagnetischen Spulen entstehen mit höherer Drehzahl des Zahnrades Schwingungen. Ab einer bestimmten Anzahl von Schwingungen / Sekunde strahlen elektrische Signale in den Raum ab. Die Kunst der Radiowellen, die man eben auch Frequenzen (Anzahl der Schwingungen/Sekunde) nennt.
Um noch die gesendeten Botschaften unterscheiden zu können, arbeitete nun jeder Station mit einer anderen Frequenz. Und auch die Frequenzen für Radio, Telegrammen, Telefone, Fernsehen müssen sich dazu voneinander unterscheiden.
Hertz ist übrigens die Einheit für eine Frequenz, benannt nach dessen Entdecker Heinrich Hertz, der die erste Funkübertragung vorstellte.
Zur offiziellen Homepage: https://grimeton.org/en/

Die nördlichste Straße der Welt* – E69 Olderfjord-Nordkap
Europastraße E69 Olderfjord – Nordkap: Die nördlichste Straße der Welt* Einmal im Leben ans Nordkap fahren… Dieser Wunsch ist heute so leicht erfüllbar wie nie

Das malerische Rudbøl am Grenzübergang Rosenkranz – Rudbøl
Der kleine Grenzort Rudbøl / Ruttebüll und was die Grenzsteine mitten auf der Straße zu suchen haben Wir besuchen den kleinen dänischen Grenzort Rudbøl nahe

Wandern im Sylan (Sylarna) – unterwegs mit DNT und STF
Unterwegs im Sylan (Sylarna) mit dem DNT und dem STF Es ist schon lange her, da habe ich mit einem Freund eine dreiwöchige Tour mit

Mittendrin statt nur dabei – Was ist eine Reportage
Was ist eigentlich eine Reportage? Wir definieren den Begriff Es gibt verschiedene Wege, den Ort mit seinem Menschen und Tieren zu beschreiben. Die langweiligste Form

Die Tundra oder die Taiga – was ist eigentlich was?
Tundra oder Taiga – unterwegs in der Finnmark von Norwegen In Norwegen, in der arktischen Klimazone, trifft man sowohl auf die Tundra wie auch auf

Eine Reise rund um die Flensburger Förde von Falshöft nach Kegnæs
Rund um die Flensburger Förde Die Flensburger Förde liegt im Grenzland von Deutschland und Dänemark. Sie ist das Revier von Schweinswalen. Ort von historischer Ziegelproduktion.

Die Nordlichtkathedrale in Alta – Architektur in Norwegen
Die Nordlichtkathedrale in Alta – Architektur in Norwegen Um Himmels Willen – jetzt auch noch eine Nordlichtkathedrale in Alta! Ja, wir haben diese größte Kirche

Homestory bei Lassen´s – Das Christian Lassen´s Museum Jardelund
Christian Lassen´s Museum Jardelund | Entlang der Grenze Deutschland – Dänemark Jedes noch so kleine Kaff hat heute sein eigenes Museum. So haben wir auch

Der tiefste Gletscher in Norwegen: Supphellebreen / Jostedalsbreen
Unterwegs im Fjærland – Der Gletscher Supphellebreen Es ist schon etwas besonderes, einen Gletscher in Norwegen hautnah zu erleben. Wir besuchen das bisher uns unbekannte

Magerøya – Was war außer Nordkap noch?
Die Nordkap-Insel in Norwegen: Visit Magerøya Der Norden zieht uns immer wieder magisch an. Und so nähern wir uns ihm, so weit wir nur können:

Glück ist eine halbe Insel – Freilichtmuseum Kjerringøy
Kjerringøy – eines der best gehüteten Geheimnisse Europas Eigentlich möchten wir auf die Lofoten. Schließlich fährt heute jeder Nordlandtourist dorthin. Doch in Bodø angekommen, beschließen

Gamvik während des Zweiten Weltkrieges unter deutscher Besatzung
Gamvik / Ostfinnmark an der Barentssee während des Zweiten Weltkrieges unter deutscher Besatzung Die deutsche Besetzung Norwegens während des Zweiten Weltkrieges galt der Sicherung von
Schreibe uns Deine Meinung